Update on LeptoSusy sample studies

Simona

Outline

- Ntuple status
 - Updates
 - Event count
- Reconstructed Leptons
 - Slow muons, muons, electrons
- Slow Muons beta distribution
 - Trigger efficiency
- First ideas on possible analysis cuts
- Btgging
 - Btag efficiency studies
- To Do List

Ntuple status

- All the energy/masses are now in GeV units!
- Added MuGirlLowBetaCollection for slow muons
- List of variables at:
 - http://ncdf70.fnal.gov:8001/atlas/JustSignalFull.h
- Ntuple at:
 - http://ncdf70.fnal.gov:8001/atlas/EvtNtuple.aan.justSignal .FullSimJorge.Allevt.AllJets.root
- Total number of events in ntuple: 9710
 - Number of events with 1 Higgs: 2204 \u2207
 - Number of events with 2 Higgs: 198
 - Number of events w/o Higgs: 7308

Slow Muons

- Slow muon multiplicity as well as regular muons multiplicity after basic cuts:
 - PT > 25 GeV, $|\eta|$ < 2.5

Beta of Muons and Slow Muons

Strange eta distribution for slow muons before any cut...

Total Muon multiplicity

ET > 25 $|\eta|$ < 2.5

Too high...
Need cleanup?

Electron Multiplicity

Too high: Need cleanup?

Total lepton multiplicity

Too high!

Need to cleanup muons and electrons?

Objects multiplicities: signal

Object multiplicities: background

Trigger

- Let's assume that we use a trigger of a single slow muon with PT > 25 GeV and β > 0.5
- I selected such events in the signal-only and background samples:
 - Signal only:1910/2402 = 79.5%
 - Background:5670/7308 = 77.6%
- Need to to real Trigger Studies of course...

Preliminary Look at Trigger Info

- Looked at events passing L2_mu20_slow:
 - STAT Trigger Statistics on 9710 processed events
 - STAT Passed events for chain L2_mu20_slow 8735 (89.9588%)

New variable in the nutple: passl2_mu20Slow

For efficiency curves need TrigMuGirl collection?

Signal and Background

Final state topologies w/o Higgs

- -4 leptons (2 slow)
- -5 leptons (2 slow)
- -6 leptons (2 slow)
- -At least 2 jets

Final state topology with 1(2) Higgs

- -At least 4 leptons (2 slow)
- -At least 4 jets (sometime 6)
- -At least 2 btagged jets (sometime 4)

Strategy

trigger on slow leptons, ask for high jet multiplicity, require b-tag

A first run at event selection

- Tentative Selection:
 - 1 slow muon PT > 25, eta < 2.5
 - At least 4/5/6 jets with ET > 25 eta < 2.5
 - Several jet multiplicity cut to optimize S/B
 - Not much difference: here I'll show results for a 6 jets selection
 - Following Veronica lead in disregarding the first 2 jets....
 - Jet 3 and 4 with btag weight cut > -3,-2,-1,0
 - Several tag weights used to calculated tagging efficiency and Rejection factor
 - Dijet invariant mass cut ? (95 < m_{j3j4} < 200) ?
- Calculated signal retention and background elimination (S/B)

Btag Weights (Reco) and Flavor (parton)

Weights tend to be peaked at < -3 for the first 2 jets

Consistent with the fact that the first 2 jets do not come from b's Still the purity does not seem to indicate 3-6 jets as real b's (better than first 2, but...)

Weight Cut

From the b-tagging official page:

(https://twiki.cern.ch/twiki/bin/view/AtlasProtected/BTaggingFAQ#Choosing_a_cut_value)

- By cutting on the b-tagging weight, you choose a working point defining a certain b-tagging efficiency eps_b and a level of rejection of light jets R_u. This choice is very analysis-dependent (mostly via jet pT/eta spectra), therefore the b-tagging group does not recommend a cut. In addition, the relation between the cut value and (eps_b, R_u) is not univoqual: it depends on the sample, the release and the b-tagging calibrations.
- I then proceed to do efficiency and rejection studies

Reference study with parton level info

These are events where two jets are selected by pairing them with two b-partons.

The two jet inv mass is then reconstructed Note the <u>purity</u> of the tag (flavor plot)

(these events are selected only using bparton info and jets (antiKT): no trigger/jet multiplicity request)

Real Analysis

- Since we cannot use b-partons to pair our jets, we need now to select them through a weight cut
- Since we do have the flavor information (simulation!) we can check that we can achieve high purity
- in fact btag efficiency and rejection are calculated using truth info
- The weight used is the default one:
 - (*newJets_Akt)[j]->getFlavourTagWeight(); // weight for IP3DSV1

B-tagging performance estimators

- B-jet efficiency ε_b as function of weight cut:
 - Denominator:
 - jets defined as b using MC truth
 - with fixed p_T and η cuts $(p_T > 25 \text{ GeV/c}, |\eta| < 2.5)$
 - Numerator:
 - ditto + cut on a tagging weight
- Light-jet rejection R_u = 1 / ϵ_u
 - R=100 means 1% mistag rate
 - light jets: u, d, s, g
- B-jet efficiency as a function of P_T and η
 - Denominator:
 - jets defined as b using MC truth
 - with fixed cut on weight (SV1 > 3, LHSig > 0.9, ...)
 - Numerator:
 - ditto + cut on p_T and η

Jets 3 and 4 and reco dijet mass before b-tag

Jet 3 and 4 with btag cut (-3)

Jet 3 and 4 with btag cut (-2)

Jet 3 and 4 with btag cut (-1)

Jet 3 and 4 with btag cut (0)

Results:

Weight cut > -3

======ANALYSIS CUTS

Number of events with one slepton trigger 1918

Number of events with one slepton trigger and 6 jets 1840

Number of events with one slepton trigger and 6 jets with cuts 1734

Number of events with one slepton trigger and 6 jets with cuts and btag weight greater than -3 917

Number of events with one slepton trigger and 4 jets with cuts and btag weight greater than -3 and dijet mass between 95 and 200 472

=====Background

Number of events w/o Higgs 7308

Number of events with one slepton trigger 5670

Number of events with one slepton trigger and 6 jets 4956

Number of events with one slepton trigger and 6 jets with cuts 4196

Number of events with one slepton trigger and 6 jets with cuts and btag weight greater than -3 2359

Number of events with one slepton trigger and 6 jets with cuts and btag weight greater than -3 and dijet mass between 95 and 200

1109

Weight cut > -2

Njet ≥ 5

925/2491

S/B=917/2359

S/B = 622/1575

629/1672

======ANALYSIS CUTS Number of events with one slepton trigger 1918

Number of events with one slepton trigger and 6 jets 1840

Number of events with one slepton trigger and 6 jets with cuts 1734

Number of events with one slepton trigger and 6 jets with cuts and btag weight greater than -2 622

Number of events with one slepton trigger and 4 jets with cuts and btag weight greater than -2 and dijet mass between 95 and 200 314

=====Background _____

Number of events w/o Higgs 7308

Number of events with one slepton trigger 5670

Number of events with one slepton trigger and 6 jets 4956

Number of events with one slepton trigger and 6 jets with cuts 4196

Number of events with one slepton trigger and 6 jets with cuts and btag weight greater than -2 1575

Number of events with one slepton trigger and 6 jets with cuts and btag weight greater than -2 and dijet mass between 95 and 200 721

Results:

Weight cut > -1

======ANALYSIS CUTS

Number of events with one slepton trigger 1918

Number of events with one slepton trigger and 6 jets 1840

Number of events with one slepton trigger and 6 jets with cuts 1734

Number of events with one slepton trigger and 6 jets with cuts and btag weight greater than -1 252

Number of events with one slepton trigger and 4 jets with cuts and btag weight greater than -1 and dijet mass between 95 and 200 132

=====Background

Number of events w/o Higgs 7308

Number of events with one slepton trigger 5670

Number of events with one slepton trigger and 6 jets 4956

Number of events with one slepton trigger and 6 jets with cuts 4196

Number of events with one slepton trigger and 6 jets with cuts and btag weight greater than -1 and dijet mass between 95 and 200 88

Weight cut > 0

======ANALYSIS CUTS ______

Number of events with one slepton trigger 1918

Number of events with one slepton trigger and 6 jets 1840

Number of events with one slepton trigger and 6 jets with cuts 1734

Number of events with one slepton trigger and 6 jets with cuts and btag weight greater than 0 178

Number of events with one slepton trigger and 6 jets with cuts and btag weight greater than 0 and dijet mass between 95 and 200 93

=====Background

Number of events w/o Higgs 7308

Number of events with one slepton trigger 5670

Number of events with one slepton trigger and 6 jets 4956

Number of events with one slepton trigger and 6 jets with cuts 4196

Number of events with one slepton trigger and 6 jets with cuts and btag weight greater than 0 88

Number of events with one slepton trigger and 6 jets with cuts and btag weight greater than 0 and dijet mass between 95 and 200 43

S/B = 178/88

180/91

S/B = 252/183

How many events in 1fb⁻¹?

 Assuming a cross section of 240 fb for Higgs-only events and 1210 for bkgr:

```
• Trigger: 80% (77.5) 192 937
```

```
• 6 jets with cuts: 72% (57.4) 172 694
```

- ◆ 2 bjets: 10% (2.5)(cut Weight > -1) 24 30
- 2 bjets: 8% (1.2)(cut Weight > 0)19

Btagging efficiency and Rejection factors

Weight Cut	W > -3	W > -2	W > -1	W > 0
ε(b)	81%	76%	71%	63%
Mistag rate	40-55%	22-36%	3%	1.2%

```
if (jetET[2] > 25 && jetET[3] > 25 && fabs(jetEta[2]) < 2.5 && fabs(jetEta[3]) < 2.5) {
    if ( fabs(jetFlavor[2]) == 5 && fabs(jetFlavor[3]) == 5) {
        bTagDenominator++;
        if (jetWeight[2] > weightCut && jetWeight[3] > weightCut) bTagNumerator++;
    }// if ( fabs(jetFlavor[2]) == 5 && fabs(jetFlavor[3]) == 5)

if ( fabs(jetFlavor[2]) != 5 && fabs(jetFlavor[3]) != 5) {
        RTagDenominator++;
        if (jetWeight[2] > weightCut && jetWeight[3] > weightCut) RTagNumerator++;
    }// if ( fabs(jetFlavor[2]) != 5 && fabs(jetFlavor[3]) != 5)

} // if (jetET[2] > 25 && jetET[3] > 25 && fabs(jetEta[2]) < 2.5 && fabs(jetEta[3]) < 2.5)</pre>
```

Efficiency vs Eta and PT

```
for ( int f = 0 ; f < 20 ; f++) {
   if (jetFlavor[3] == 5 && fabs(jetEta[3]) < 2.5 && ( jetET[3] >= 25+10*f && jetET[3] < 25 +10*(f+1) ) ) {
     bTagEffPTDenominator3[f]++;
     if (jetWeight[3] > weightCut) bTagEffPTNumerator3[f]++;
   }// if (jetFlavor == 5 && fabs(jetEta[3]) < 2.5 && ( jetET[3] >= 25+10*f && jetET[3] < 25 +10*(f+1) ) ) {
} // for ( int = 0 ; f < 20 ; f++)
for (int f = 0; f < 10; f++) {
   if (jetFlavor[3] == 5 && jetET[3] > 25 && (jetEta[3] >= -2.5 + 0.5*f && jetEta[3] < -2.5+0.5*(f+1)) ) {
     bTagEffEtaDenominator3[f]++;
   if (jetWeight[3] > weightCut)bTagEffEtaNumerator3[f]++;
   } // if (jetFlavor == 5 && jetET[3] > 25 && (jetEta[3] >= -2.5 + 0.5*f && jetEta[3] < -2.5+0.5*(f+1)) )
} // for (int f = 0; f < 10; f++)</pre>
```

Fluctuations due to low statistics

Efficiency and Mistag

Weight > -1

Efficiency and Mistags

Efficiency and Mistags

To Do: meant to be a do list for all

- Btagging efficiency as function of PT and eta
 - Investigate other taggers?
 - Might need to reprocess the sample...
- Lepton multiplicities
 - Cleanup of electrons and muons
 - Even if no lepton selection is done...
 - Maybe add to the selection criteria: 1 slow muons (trigger), a second slow muon and no more than 2 leptons? + jets and b-tag?
 - Investigate....
- Trigger Efficiency:
 - Number of events passing slow muon trigger / number of events with offline slow muon
 - Need to add trigger branch to ntuple (for now only l2pass_mu20Slow)
- InvMass searches code (Argonne)
 - Need to implement the slow muon recognition
 - Possible base for a signature based analysis?
- Start writing a draft note
- AOB....

SUSY Trigger meeting - 22/03/2010

- mu20_slow is part of the physics menu
- It has been specifically designed to trigger on heavy long lived charged particles
- It modifies standard muon triggers to measure β
 - Recover the cases in which no inner detector track is associated to muon spectrometer hits
 - low β candidates or charge flipping R-Hadrons
 - Improve efficiency for low β in EF

- It has very low bkgd rates at 10³¹ and 10³⁴
- It can be activated as soon as RPC and MDT timing are well calibrated

Efficiency vs Eta and PT

The plots are normalized to jet with Weight Cut, eta/PT cut and flavor == 5 Nothing changes much...

Efficiency vs Eta and Pt

These plots are normalized to jet with weight cut and PT/eta, but not flavor!

36

Cross Section:LHC vs Tevatron

- •1) 7 TeV pp
 - •Production cross section: 1.45 pb (240fb for Higgs).
 - •q-q initial state is 70%, q-antiq is 20% and g-g is 10%.
- •2) 2 TeV ppbar
 - Production cross section is 159.8 ab (attobarns)
 - •q-anti q is 159.5 ab (99%).